Example 3 Forz=x+iy, x,yER

[ f(z):eZ:ex+ly:=exely [

Discuss and sketch how f transforms thg z=plane into an infinitely covered w- plane.
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Example 4 For w=¢” use polar form to find the multi-valued inverse "function"
z=1log(w), and corresponding domains:
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Remark: The logarithm is used to define complex powers of complex numbers, in
analogy with the definition in real variables. It is not too hard to check that this
definition generalizes the integer powers and roots that we've already talked about.

Definition:

z zlog w
W:_e—&'.

(I assigned a few hw problems which are examples of this definition.)
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Example 5 "Trig functions". < B;&L [: ;f-u\c
If x is real, .
ix .. L2 \")""\ ol A Gy 0
eqtn 1 e "= cos(x) + isin(x) e A% o 204
eqtn 2 e "“=cos(x) - isin(x). e h) A Q=
eqtn 1 + eqtn?2 _
2
cos(x) = %(eix +e7i¥) e
eqtn 1 - eqtn?2 _
21
. _ L ix_ -iXx P
sin(x) 5 (e'*-e™ ')
Also recall the hyperbolic trig functions
cosh(x) = %(ex + e”¥)
sinh(x) = %(ex—e_x)
So we define, for z € C,
1, ; _ 1 i}
@ cos(z) = ?(elz—k e '?) cosh(z) = ?(ez+ e 7) =cos(iz)
_ . ' 1 ) .
o sin(z) = > 7 (e'“-e7'7) sinh(z) = 2—(ez—e ?) = -isin(iz).

"Trig" identities hold, via properties of complex exponential multiplication. Note that
sin(z), cos(z) are no longer bounded functions....and it's pretty challenging to figure
out their transformation pictures, and their multi-valued inverse functions!

> sin z + cos® z=1 alglve .
de ( e -~ 1 W] 2
Fookd [ R(TEN] [T =
TR
ott® = e e sin(z + w) = sin(z) cos(w) + cos(z)sin(w)
cos(z + w) =cos(z)cos(w) — sin(z)sin(w)
trigh ...

cosh?(z) — sinh?(z) = cosz(iz) +sin’(i z) =1



Math 4200-001
Wednesday September 2: Finish 1.3; begin 1.5, complex differentiability

m&j io Labor Day o liday

Announcements (N.x‘\‘ Huw \9 o al\ in 51.6)
Today we will add to the discussion of section 1.3, using ﬂ/londay s notes. There is

more to say about exponentials and logarithms and the complex "trig" functions. Then
we will proceed into today's notes.

Notice that we're skipping section 1.4. This section is a review of some of the analysis
you've learned in Math 3210-3220 in the context of the complex plane. Since the
complex plane C is isometric to R%, I'm choosing to not formally cover section 1.4.
Rather, we will use the definitions and theorems as we need them in 1.5 and going
forward, and we will remind each other of how they correspond to - or actually exactly
are - definitions and theorems from 3210-3220. We'll refer back to section 1.4 as
needed. This is a change from how I taught the class last fall, and I think it will be more
efficient and improve the flow. We'll see. :-)

Quiz 2 today, at the end of class, related to section 1.3 material.
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Warm-up exercise



[2-w| s He dastane bedeen 2z, w.
Def Let f:4A—C where 4 & C 1sopen. Let z; € A. We say that [ is (complex)
differentiable at z iff

. f(z) —f (%)

= f"(z
exists. Note: an equivalent way to express the limit above is as
o f(zg T h) —f(z
o (20T h) =/ (20)

h—0 h

Example 1: Using |z — w| for the Euclidean distance between z, w € C, write down

the precise statement of each analysis concept in the definition above for f being
complex differentiable at z.
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Def Let f: 4— C where A & C is open. If f is complex differentiable for all z € 4
then we say that f is (complex) analytic or holomorphic on A.




Remark: So that you don't get complacent, here is some magic we'll be seeing within a
few weeks:

(1) If f is analytic on 4 as on the previous page, then the derivative function f” is too!
And f"':= (f") istoo. And in fact, f has n'™ order derivatives of every order n on 4
as soon as its first derivative exists on all of 4. Automatically! (Nothing like this was
true in general for differentiable functions in regular Calculus! For example there are
lots of differentiable functions that are not infinitely differentiable.)
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(i) If f is analytic on all of C and if f is also a bounded function, then actually 1
must be a constant. (This is called Liouville's Theorem.) In fact, if f is analytic on all
of C and if f grows no faster than a polynomial (|f(z)| < C|z|" for |z| > M some
M), then actually f(z) is a polynomial of degree at most n !! There are lots more
analytic functions than just polynomials, but even if they're analytic on all of C they
behave much more wildly than polynomials as |z — o .

(iif) If f; g are both analytic on an open connected set A and if {z, }n e v E Aisa

sequence of distinct complex numbers, with {zn } —z, € 4; and if
f(z ) =g(zn), V n € N, then actually f(z) =g(z) Vze 4 !

n

Example 2 What are the two equivalent definitions of connected set, in the case that the
set A is also open?

(iv) If f, g are both analytic on and open connected set A and if the function values and
all derivatives of f and g agree at z, then actually f(z) =g(z) forall z € 4.



Until we get to the magic, let's proceed as we did in Calculus. As we do this we'll be
recalling facts and limit theorems/estimates from 3210-3220.

Theorem Let f be complex differentiable at zy € 4, 4 & C open. Then [ is
continuous at z;.
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Theorem Let 4 < C open, f, g: A— C analytic, c € C. Then cf, f+ g, fg are
analytic on 4. And the quotient é is analytic in A4 intersect the complement of the

zero set for g. Furthermore, for z € 4,
(1) (cf)'(z)=cf (2)

(i) (f+g)'(2) =/ (2) +g'(2)

(i) (fg)'(2) =/ (2)g(z) + f(2)g' (z)

(iv) ( ﬁ) =L (z)g(z; (;)J;(Z)g’ (2)

where g(z) # 0.

The proofs are just like in Calc 1. We can verify the product rule or the quotient rule,
for example:




Some more computations that go just like in Calculus:

(1) if f(z) is the constant function, its derivative is zero.

(i) if f(z) =2",n € N, then /' (z)=n2" !

(iii) if f(z)=2",n € Z, then [ (z)=nz" !

(iv) every polynomial in z is analytic on C, with the expected formula for its derivative.

(v) if f(z) = ‘Z E;; is a rational function, i.e. a quotient of two polynomials, then

f(z) is analytic on the complement of the zero set for ¢.

The chain rule is also true - we'll prove this on Friday or next week, along with a

discussion of the inverse function theorem. (The chain rule proof proceeds just like the
precise proof for the 1-variable real chain rule that you discussed in 3210). In any case,
if f is differentiable at z, and g is differentiable at f(z,) then g f is differentiable at

z,, and

(g°f) (20) =g (f(20))S (20)-



Example 3: Write z=x+iy,y € R. Then f(z) =Re(z) =x is NOT complex
differentiableyat any point of C ! (Even though the associated F': R*— R’ given by

F(x,y) = (Ref, Im f) = (x, 0)
1s Math 3220-differentiable, with differential (Jacobian) matrix
1 0

0 0
The way to check Example 3 at any point z, =x, + i y, is to evaluate the limits

dF =

1"
(x,»)

LR

i 17 (0)
0 Z— ZO

z— z, from the real and imaginary directions and see that these limits do not agree.



